Civil MDC

EVALUATION OF PUSHOVER ANALYSIS PROCEDURES FOR FRAME STRUCTURES by SERMN OUZ

Pushover analysis involves certain approximations and simplifications that some amount of variation is always expected to exist in seismic demand prediction of pushover analysis. In literature, some improved pushover procedures have been proposed to overcome the certain limitations of traditional pushover procedures. The effects and the accuracy of invariant lateral load patterns utilised in pushover analysis to predict the behavior imposed on the structure due to randomly selected individual ground motions causing elastic and various levels of nonlinear response were evaluated in this study. For this purpose, pushover analyses using various invariant lateral load patterns and Modal Pushover Analysis were performed on reinforced concrete and steel moment resisting frames covering a broad range of fundamental periods. Certain response parameters predicted by each pushover procedure were compared with the ‘exact’ results obtained from nonlinear dynamic analysis. The primary observations from the study showed that the accuracy of the pushover results depends strongly on the load path, properties of the structure and the characteristics of the ground motion. Pushover analyses were performed by both DRAIN-2DX and SAP2000. Similar pushover results were obtained from the two different softwares employed in the study iv provided that similar approach is used in modeling the nonlinear properties of members as well as their structural features. The accuracy of approximate procedures utilised to estimate target displacement was also studied on frame structures. The accuracy of the predictions was observed to depend on the approximations involved in the theory of the procedures, structural properties and ground motion characteristics. Keywords: Pushover analysis, seismic performance evaluation, nonlinear response, Modal Pushover Analysis, approximate procedures

Leave a Comment

Your email address will not be published. Required fields are marked *