Civil MDC

## Our New Digital Store --> civilmdc.mysellix.io # Advanced Engineering Mathematics, 6th Edition by Zill Released September 2016 (6th Edition)

• Cover Page
• Title Page
• Contents
• Preface
• PART 1 Ordinary Differential Equations
1. 1 Introduction to Differential Equations
1. 1.1 Definitions and Terminology
2. 1.2 Initial-Value Problems
3. 1.3 Differential Equations as Mathematical Models
4. Chapter 1 in Review
2. 2 First-Order Differential Equations
1. 2.1 Solution Curves Without a Solution
1. 2.1.1 Direction Fields
2. 2.1.2 Autonomous First-Order DEs
2. 2.2 Separable Equations
3. 2.3 Linear Equations
4. 2.4 Exact Equations
5. 2.5 Solutions by Substitutions
6. 2.6 A Numerical Method
7. 2.7 Linear Models
8. 2.8 Nonlinear Models
9. 2.9 Modeling with Systems of First-Order DEs
10. Chapter 2 in Review
3. 3 Higher-Order Differential Equations
1. 3.1 Theory of Linear Equations
1. 3.1.1 Initial-Value and Boundary-Value Problems
2. 3.1.2 Homogeneous Equations
3. 3.1.3 Nonhomogeneous Equations
2. 3.2 Reduction of Order
3. 3.3 Homogeneous Linear Equations with Constant Coefficients
4. 3.4 Undetermined Coefficients
5. 3.5 Variation of Parameters
6. 3.6 Cauchy–Euler Equations
7. 3.7 Nonlinear Equations
8. 3.8 Linear Models: Initial-Value Problems
1. 3.8.1 Spring/Mass Systems: Free Undamped Motion
2. 3.8.2 Spring/Mass Systems: Free Damped Motion
3. 3.8.3 Spring/Mass Systems: Driven Motion
4. 3.8.4 Series Circuit Analogue
9. 3.9 Linear Models: Boundary-Value Problems
10. 3.10 Green’s Functions
1. 3.10.1 Initial-Value Problems
2. 3.10.2 Boundary-Value Problems
11. 3.11 Nonlinear Models
12. 3.12 Solving Systems of Linear Equations
13. Chapter 3 in Review
4. 4 The Laplace Transform
1. 4.1 Definition of the Laplace Transform
2. 4.2 The Inverse Transform and Transforms of Derivatives
1. 4.2.1 Inverse Transforms
2. 4.2.2 Transforms of Derivatives
3. 4.3 Translation Theorems
1. 4.3.1 Translation on the s-axis
2. 4.3.2 Translation on the t-axis
1. 4.4.1 Derivatives of Transforms
2. 4.4.2 Transforms of Integrals
3. 4.4.3 Transform of a Periodic Function
5. 4.5 The Dirac Delta Function
6. 4.6 Systems of Linear Differential Equations
7. Chapter 4 in Review
5. 5 Series Solutions of Linear Differential Equations
1. 5.1 Solutions about Ordinary Points
1. 5.1.1 Review of Power Series
2. 5.1.2 Power Series Solutions
2. 5.2 Solutions about Singular Points
3. 5.3 Special Functions
1. 5.3.1 Bessel Functions
2. 5.3.2 Legendre Functions
4. Chapter 5 in Review
6. 6 Numerical Solutions of Ordinary Differential Equations
1. 6.1 Euler Methods and Error Analysis
2. 6.2 Runge–Kutta Methods
3. 6.3 Multistep Methods
4. 6.4 Higher-Order Equations and Systems
5. 6.5 Second-Order Boundary-Value Problems
6. Chapter 6 in Review
• PART 2 Vectors, Matrices, and Vector Calculus
1. 7 Vectors
1. 7.1 Vectors in 2-Space
2. 7.2 Vectors in 3-Space
3. 7.3 Dot Product
4. 7.4 Cross Product
5. 7.5 Lines and Planes in 3-Space
6. 7.6 Vector Spaces
7. 7.7 Gram–Schmidt Orthogonalization Process
8. Chapter 7 in Review
2. 8 Matrices
1. 8.1 Matrix Algebra
2. 8.2 Systems of Linear Algebraic Equations
3. 8.3 Rank of a Matrix
4. 8.4 Determinants
5. 8.5 Properties of Determinants
6. 8.6 Inverse of a Matrix
1. 8.6.1 Finding the Inverse
2. 8.6.2 Using the Inverse to Solve Systems
7. 8.7 Cramer’s Rule
8. 8.8 The Eigenvalue Problem
9. 8.9 Powers of Matrices
10. 8.10 Orthogonal Matrices
11. 8.11 Approximation of Eigenvalues
12. 8.12 Diagonalization
13. 8.13 LU-Factorization
14. 8.14 Cryptography
15. 8.15 An Error-Correcting Code
16. 8.16 Method of Least Squares
17. 8.17 Discrete Compartmental Models
18. Chapter 8 in Review
3. 9 Vector Calculus
1. 9.1 Vector Functions
2. 9.2 Motion on a Curve
3. 9.3 Curvature and Components of Acceleration
4. 9.4 Partial Derivatives
5. 9.5 Directional Derivative
6. 9.6 Tangent Planes and Normal Lines
7. 9.7 Curl and Divergence
8. 9.8 Line Integrals
9. 9.9 Independence of the Path
10. 9.10 Double Integrals
11. 9.11 Double Integrals in Polar Coordinates
12. 9.12 Green’s Theorem
13. 9.13 Surface Integrals
14. 9.14 Stokes’ Theorem
15. 9.15 Triple Integrals
16. 9.16 Divergence Theorem
17. 9.17 Change of Variables in Multiple Integrals
18. Chapter 9 in Review
• PART 3 Systems of Differential Equations
1. 10 Systems of Linear Differential Equations
1. 10.1 Theory of Linear Systems
2. 10.2 Homogeneous Linear Systems
1. 10.2.1 Distinct Real Eigenvalues
2. 10.2.2 Repeated Eigenvalues
3. 10.2.3 Complex Eigenvalues
3. 10.3 Solution by Diagonalization
4. 10.4 Nonhomogeneous Linear Systems
1. 10.4.1 Undetermined Coefficients
2. 10.4.2 Variation of Parameters
3. 10.4.3 Diagonalization
5. 10.5 Matrix Exponential
6. Chapter 10 in Review
2. 11 Systems of Nonlinear Differential Equations
1. 11.1 Autonomous Systems
2. 11.2 Stability of Linear Systems
3. 11.3 Linearization and Local Stability
4. 11.4 Autonomous Systems as Mathematical Models
5. 11.5 Periodic Solutions, Limit Cycles, and Global Stability
6. Chapter 11 in Review
• PART 4 Partial Differential Equations
1. 12 Orthogonal Functions and Fourier Series
1. 12.1 Orthogonal Functions
2. 12.2 Fourier Series
3. 12.3 Fourier Cosine and Sine Series
4. 12.4 Complex Fourier Series
5. 12.5 Sturm–Liouville Problem
6. 12.6 Bessel and Legendre Series
1. 12.6.1 Fourier–Bessel Series
2. 12.6.2 Fourier–Legendre Series
7. Chapter 12 in Review
2. 13 Boundary-Value Problems in Rectangular Coordinates
1. 13.1 Separable Partial Differential Equations
2. 13.2 Classical PDEs and Boundary-Value Problems
3. 13.3 Heat Equation
4. 13.4 Wave Equation
5. 13.5 Laplace’s Equation
6. 13.6 Nonhomogeneous Boundary-Value Problems
7. 13.7 Orthogonal Series Expansions
8. 13.8 Fourier Series in Two Variables
9. Chapter 13 in Review
3. 14 Boundary-Value Problems in Other Coordinate Systems
1. 14.1 Polar Coordinates
2. 14.2 Cylindrical Coordinates
3. 14.3 Spherical Coordinates
4. Chapter 14 in Review
4. 15 Integral Transform Method
1. 15.1 Error Function
2. 15.2 Applications of the Laplace Transform
3. 15.3 Fourier Integral
4. 15.4 Fourier Transforms
5. 15.5 Fast Fourier Transform
6. Chapter 15 in Review
5. 16 Numerical Solutions of Partial Differential Equations
1. 16.1 Laplace’s Equation
2. 16.2 Heat Equation
3. 16.3 Wave Equation
4. Chapter 16 in Review
• PART 5 Complex Analysis
1. 17 Functions of a Complex Variable
1. 17.1 Complex Numbers
2. 17.2 Powers and Roots
3. 17.3 Sets in the Complex Plane
4. 17.4 Functions of a Complex Variable
5. 17.5 Cauchy–Riemann Equations
6. 17.6 Exponential and Logarithmic Functions
7. 17.7 Trigonometric and Hyperbolic Functions
8. 17.8 Inverse Trigonometric and Hyperbolic Functions
9. Chapter 17 in Review
2. 18 Integration in the Complex Plane
1. 18.1 Contour Integrals
2. 18.2 Cauchy–Goursat Theorem
3. 18.3 Independence of the Path
4. 18.4 Cauchy’s Integral Formulas
5. Chapter 18 in Review
3. 19 Series and Residues
1. 19.1 Sequences and Series
2. 19.2 Taylor Series
3. 19.3 Laurent Series
4. 19.4 Zeros and Poles
5. 19.5 Residues and Residue Theorem
6. 19.6 Evaluation of Real Integrals
7. Chapter 19 in Review
4. 20 Conformal Mappings
1. 20.1 Complex Functions as Mappings
2. 20.2 Conformal Mappings
3. 20.3 Linear Fractional Transformations
4. 20.4 Schwarz–Christoffel Transformations
5. 20.5 Poisson Integral Formulas
6. 20.6 Applications
7. Chapter 20 in Review
• Appendices
1. I Derivative and Integral Formulas
2. II Gamma Function
3. III Table of Laplace Transforms
4. IV Conformal Mappings
• Answers to Selected Odd-Numbered Problems
• Index
Scroll to Top