Civil MDC

# Civil Books Platform

## Design of R.C Section Subjected to Moment

Designing a reinforced concrete (R.C.) section subjected to bending moment involves determining the required dimensions, reinforcement, and capacity to safely resist the applied moments. Here’s a step-by-step guide to designing an R.C. section subjected to bending moment: Determine the design criteria: Identify the purpose of the structural element, the type of structure, and any specific […]

## Design of Rectangular Columns

Designing rectangular columns involves determining the appropriate dimensions, reinforcement, and capacity to safely carry the applied loads. Here’s a step-by-step guide to designing rectangular columns: Determine the design criteria: Identify the purpose of the column, the type of structure, and any specific design requirements such as load capacity, seismic considerations, fire resistance, or architectural constraints.

## Design of Cracked Sections & Uncracked Sections

When designing structural elements, it is important to consider both the behavior of uncracked sections and the behavior of cracked sections. Here’s an overview of the design considerations for both types of sections: Uncracked Sections: Determining the section properties: Calculate the moment of inertia, cross-sectional area, and other relevant properties of the uncracked section based

## Circular Tank

Designing a circular tank involves determining the required dimensions, wall thickness, reinforcement, and stability considerations. Here’s a step-by-step guide to designing a circular tank: Determine the design criteria: Identify the purpose of the tank, the type of material stored, and any specific design requirements such as maximum capacity, service life, and environmental conditions. Determine the

## DESIGN FOR TORSION (rectangular section)

Designing for torsion in a rectangular section involves determining the required reinforcement to resist the twisting forces acting on the member. Here’s a step-by-step guide to designing for torsion in a rectangular section: Determine the applied torsional moment: Identify the magnitude and direction of the applied torsional moment on the rectangular section. This can be

## Design for Torsion

Designing for torsion involves determining the required reinforcement to resist the twisting forces acting on a structural member. Here’s a step-by-step guide to designing for torsion: Determine the applied torsional moment: Identify the magnitude and direction of the applied torsional moment on the structural member. This can be due to various factors such as eccentric

## Design of slabs ( two way solid slab )

Designing a two-way solid slab involves determining the slab thickness, calculating the reinforcement required, and checking the deflection and bending capacity of the slab. Here’s a step-by-step guide to designing a two-way solid slab: Determine the span of the slab: Measure the distance between supports to determine the span of the slab in both directions

## Design of slabs (one way solid slab )

Designing a one-way solid slab involves determining the slab thickness, calculating the reinforcement required, and checking the deflection and bending capacity of the slab. Here’s a step-by-step guide to designing a one-way solid slab: Determine the span of the slab: Measure the distance between supports to determine the span of the slab. Calculate the effective

## Prestressed Design of Concrete

The design of prestressed concrete involves determining the appropriate amount and placement of prestressing reinforcement to achieve the desired strength and performance of the structure. Here is a general outline of the prestressed concrete design process: Identify Design Requirements: Understand the project requirements, including the intended use of the structure, design loads, span lengths, and

## Check of Prestress concrete for sec subject to M&N&Pi

To check the prestressed concrete section subjected to moment (M), axial force (N), and shear force (V), you need to consider the following design steps: Determine Design Loads: Identify the applied loads on the section, including the axial force (N), bending moment (M), and shear force (V) at the critical section. Calculate Effective Prestress Force:

## Design of Under Ground Beam

Designing an underground beam involves considering various factors such as the applied loads, soil conditions, and structural requirements. Here is a general outline of the design process for an underground beam: Determine Loads: Identify and quantify all the loads that the underground beam will be subjected to, including dead loads (weight of the beam and

## DESIGN OF ISOLATED FOUNDATION SUBJECTED TO PURE NORMAL FORCE

When designing an isolated foundation subjected to a pure normal force, such as a column or vertical load, the following steps can be followed: Determine the Load: Identify the magnitude and location of the vertical load acting on the foundation. This load can be obtained from the structural analysis of the superstructure. Soil Investigation: Conduct

## Design of isolated foundation

Isolated foundation design involves determining the dimensions and reinforcement requirements for a foundation that supports a single column or load-bearing element, such as a column, post, or machine. Here’s a general outline of the design process for an isolated foundation: Determine the Loads: Identify and quantify all the loads acting on the foundation, including dead

## Design of Isolating Intermediate footing

Designing an isolating intermediate footing involves creating a foundation that provides support and isolates the loads of an individual column or set of columns from the adjacent footings or structures. This type of footing is commonly used when there is a need to prevent the transfer of loads or to address differential settlements between columns.

## Design of Isolating footing at edg.

Designing an isolating footing at the edge involves creating a foundation that isolates the supported structure from the adjacent structure or ground. This type of footing is commonly used when there is a need to prevent differential settlements or to minimize the transfer of loads between structures. Here are the key steps involved in designing

## Design of Column for internal frame

Designing a column for an internal frame involves considering various factors, including the load requirements, structural stability, material selection, and architectural considerations. Here are some key steps to consider when designing a column for an internal frame: Load Analysis: Determine the types and magnitudes of the loads that the column will be subjected to. Consider

## Design of Column for external frame

Designing a column for an external frame involves considering several factors, including the load requirements, structural stability, material selection, and architectural considerations. Here are some key steps to consider when designing a column for an external frame: Load Analysis: Determine the types and magnitudes of the loads that the column will be subjected to. Consider

## DESGIN A COLUMN SUBJECTED TO TENSION FORCE

Objective: Design a column to resist a specific tension force of magnitude F. Material Selection: Choose a material with high tensile strength, such as steel or prestressed concrete, to effectively withstand the tension force.Cross-Sectional Shape and Dimensions: Select a suitable cross-sectional shape for the column, such as rectangular, square, or circular, based on structural efficiency

## Design Of Columns For The Last Three Floors

Designing columns for the last three floors of a building involves considering several factors, including the load requirements, structural stability, material selection, and construction considerations. Here are some key steps to consider when designing columns for the uppermost floors: Load analysis: Determine the types and magnitudes of the loads that the columns will be subjected

## DESIGN OF SECTION

Designing a section involves determining the appropriate dimensions and shape for a structural or architectural element. The specific design considerations will vary depending on the type of section being designed, such as a beam, column, wall, or slab. Here are some general steps to consider when designing a section: Determine the functional requirements: Understand the

Scroll to Top